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On the existence of monopoles in grand unified theories 

P A Horvathyt and J H RawnsleyS 
Centre de Physique Thkorique!, CNRS Luminy Case 907, 13288 Marseille Cedex 9, France 

Received 19 February 1985 

Abstract. Let G be a compact and connected Lie group. A grand unified theory having 
G as gauge group can admit monopole solutions only if a topological constraint is satisfied. 

It has been argued recently (McInnes 1984) that ‘an electroweak gauge theory based 
on a compact connected non-semisimple Lie group admits no stringless magnetic 
monopoles, except in the case in which the charge operator lies entirely inside the 
semisimple part of the algebra’. 

The proof is based on the assumption that the unbroken theory is defined on a 
trivial ‘unifying’ bundle P. Over the ‘two-sphere at infinity’, this bundle is reduced to 
a U( 1) bundle (0, U( 1)). To get a monopole, this reduced bundle must be non-trivial. 
McInnes shows then that if the condition above is not satisfied, any reduction of P is 
trivial and so there are no monopoles. 

The example below shows however, that the reduced bundle can be trivial, even 
if the electromagnetic direction belongs to the semisimple part. In proposition 1, 
theorem 2 we give instead the necessary and sufficient condition for getting a non-trivial 
reduction from a trivial unifying bundle. Our results are valid for an arbitrary (and 
not only for electroweak) grand unified gauge theory (GUT). 

Let G be a compact and connected Lie group and consider a GUT having G as 
gauge group. In geometric language, a monopole is described by a connection form 
A on a trivial ‘unifying’ bundle P = R’ xG,  and an equivariant map Q, on P which 
takes its values in a suitable representation space. Choosing a global trivialisation of 
P, Q, is identified with the physical Higgsfield. 

Spontaneous symmetry breaking means that over S 2 ,  the ‘two-sphere at infinity’, 
Q, takes its values in an orbit G/H of G, where H is a closed subgroup of G. 

Geometrically, the restriction of P to S 2  (which we denote also by P )  must reduce 
to an H bundle (0, H). This reduction is defined by Q,. (To have finite energy one 
requires that DQ, = 0 over S 2 .  This implies that the Yang-Mills connection also reduces 

The isomorphism class of a principal bundle (Q,  H) is characterised by the funda- 
mental topological invariant [ 91 E T,( H), the image under the injective homomorphism 
8: .rr,(G/H) + .rr,(H) of the homotopy class [Q,] E .rr2(G/H). 

As proved in Horvathy and Rawnsley (1985c)-see also (Bais 1981)-if P is a G 
bundle, an H bundle Q c  P is a reduction of P if and only if i * [ Q ] =  [ P I ,  where i, 
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to (0, H)). 
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is the group homomorphism i,: r , (H)  -j r , (G)  induced by the inclusion map i : H-, G. 
Applied to the trivial bundle P whose class [PI vanishes, we get the following 
proposition. 

Proposition 1. The H bundle Q is the reduction of a trivial unifying bundle (P ,  G) 
over S 2  if and only if 

i*[ 91 = 0. (1) 

If G is simply connected, (1) is automatic. 

This condition can be translated to algebraic terms. First, remember that over S 2  
the Yang-Mills-Higgs equations reduce to an A-valued pure Yang-Mills equation 

D*F=O (2) 

whose solution has been found by Goddard et al (1977): these exists a fixed, quantised 
(i.e. exp(4rl-I) = 1) vector II-the so-called ‘non-Abelian charge’-such that 

F =  F D .  n (3)  

where FD is the canonical surface form of S2.  II is unique up to constant gauge 
transformation, Thus II can always be chosen to belong to any given Cartan algebra. 

Physically, F,, is the field strength tensor for a Dirac monopole of magnetic charge 
1/2eh. 

The homotopy invariant [ 93 E rl( H) is represented by the loop 

exp( 4rtl-I) O s t G l .  (4) 

Such a solution is called a monopole if (4) has non-vanishing homotopy class in r , (H) .  
Next, in Horvathy and Rawnsley (1985a) we have shown that, for any compact 

and connected G, 

r I (G)  rl(G)frcc+ r , (K)  (5) 

where K is the semisimple subgroup of G generated by the derived algebra A = [ 3, 31. 
To describe the free part, let ? = ( 5  E % \ e x p ( 2 ~ [ )  = l }  be the unit lattice of G, and 

denote z : 3-j Z( 9) as the projection of the Lie algebra of G onto its centre. z ( F ) ,  the 
image of ? under z, is a lattice in Z( %). According to 0 2 of (Horvathy and Rawnsley 
1985a) there is an isomorphism p of ri(G)free with the lattice z(?), considered as a 
free Abelian group -- Z p ,  where p is the dimension of Z( 3) .  (Choosing a Z basis for 
z(?), we get p ‘quantum’ numbers m, ,  . . . , m p ) .  For a monopole given by a non-Abelian 
charge II, p [  Q ]  = 2z(II). 

r,(K)-a finite Abelian group-is described as follows: Let T c  K be a maximal 
torus with Lie algebra t ,  and let K* be the simply connected group having A as Lie 
algebra. Then we have two unit lattices, r={ [E t l exp(K2r t )=  e} and r*= 
( ( € 4  lexp(K*2r() = e*}. r* c r and it is known (Wallach 1973) that r , ( K )  = T/T*. 

The unit lattice r can be described in terms of the roots (Humphreys 1972) of the 
simply connected group K*. Let A be the set of roots of ( k c ,  tC) ,  so A c  it* (algebraic 
dual). Let A+ be the set of positive roots. If a,, . . . , a, are the simple roots then there 
are elements H,, E tC  with 

B(Ha,, H) = ai(H) H E t  

where B is the (non-degenerate) Killing form of the semisimple algebra A. r* is 
generated over Z by G H l , .  . . , G H ,  where Hi  = 2Ha,/ai(H,,)  (Wallach 1973). 
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In order to reformulate proposition 1 in terms of the non-Abelian charge, let us 
decompose II as 

rI = Z(n) + n' (6) 

where II'E A. Our remarks prove the following theorem. 

Theorem 2. The solution of the asymptotic field equations (1) defined by a quantised 
vector II E A is a monopole solution of the sponianeously broken GUT iff 

&(n) = 0 ( 7 a )  

2r11~ r: (76) 

zH(n) f 0 or 2 n w ;  (8) 

either 

where the subscript G (respectively H) refers obviously to the groups G (respectively 
HI. 

Indeed, equations (7a)-(76) mean that (9, H) is a reduction of the trivial unifying 
bundle P whilst (8) ensures that (0, H) has already non-trivial topology. 

Conversely, assume that we are given a II satisfying the conditions (7a)-(76) and 
(8). Are we able to build a monopole out of it? The answer is yes, at least asymptotically. 

To see this, consider first a closed subgroup H or G, and consider a principal H 
bundle Q. H acts on Q x G according to (q ,  g )  h = (qh,  h - ' g ) .  The associated bundle 
P = Q x,G is a principal G bundle: G acts on P according to [q ,  g ] g ' =  [ q ,  g g ' ] .  
Furthermore, Q is a reduction of this bundle, since it can be identified with 

If A is a connection on Q, it has a unique extension to P: indeed, ( A  + g-'  dg) is 
an H-invariant %-valued 1-form on Q xG; if is the vector field on Q xG defined by 
the infinitesimal action of 6 E A, then <J ( A  + g-'  dg) = A( i) - 6 = 0 since i is the 
fundamental vector field corresponding to 6. This extended connection obviously 
reduces to Q. 

Let us return to our original problem. 2 n =  n to for some integer n and a minimal 
U (  1) generator to since 211 is quantised. For each n E 2 there is a unique U (  1) bundle 
Y, over S2-the well known Hopf bundle-with connection form ia,, and curvature 
in F D .  F D  is harmonic, ( d F  = 0 and d * F = 0) and hence (Y,,, a,) is a solution of the 
U( 1)-Yang-Mills-i.e. the Maxwell-equations. This is furthermore the unique 
solution up to equivalence. 

Let U = {exp(2rrtto) 10s t 6 1) be the U (  1) subgroup of H generated by to. Then 
Y,, can be viewed as a principal U bundle, and, as demonstrated above, 

{ [ q ,  el  I 4  E Q).  

Q = Y n X U H  (9) 
is a principal H bundle over S2 with a U connection cy, 5 and with curvature 

The extended connection A solves the H-valued Yang-Mills equations (2) since 
the field equations are gauge invariant and on Y,, the Maxwell equations are satisfied. 

To have a local picture, choose the standard covering V+ = S2\{south pole} and 
V- = S2\{north pole} and select 1-forms cy, with FD I V, = da,  . Y,, admits then sections 
s+ and s- with sTcy,,=na, in V + n  V- - s + = s - h  with h : S ' + U ;  in fact h ( e ) =  
exp( n 9 t o e )  = e x p ( 2 d ) ,  where Oc 6 s 2rr, parametrises the equatorial circle. h(  0 )  is 

nFD t o =  FD * 2n .  
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the transition function also for Q, so the fundamental topological invariant 193 E n,(H) 
which characterises Q is the homotopy class of the loop (4). The extended connection 
is expressed in these gauges as 

( s T A ) ~ ( ~ ) ~  = Adg-'ntY, + g-' dg, 

P = Q x H G  (11) 

(10) 

This same procedure can be applied.once more to get the principal G bundle 

with the extended connection. Q is then a reduction of P, which, by theorem 2, is a 
trivial bundle. 

(P, G) trivial implies that there exists a global section y :  S 2  4 Q xH G. However, 
such a section is equivalent to an H-equivariant function (which we denote also by 
y )  on Q with values in the fibre, G: y ( q h )  = h - ' y ( q ) .  But Q X, G contains the H-bundle 
Q as sub-bundle, so Q is also a reduction of Q x H by a Higgs field @: S 2  + G/ H. In 
fact 

@ ( X I  = [Y(q)l-'H. (12) 

(12) is convariantly constant since the G connection reduces to (Q, H ) .  We summarise 
with the theorem below. 

Theorem 3. Any quantised n E A which satisfies (7a)-(7b) and (8) defines an asymptotic 
monopole configuration, constructed as above. 

The same conclusions can be reached of course without using fibre bundles. In 
Goddard and Olive (1978) and (Coleman 1983) it is proved in fact that monopoles 
can exist only if the non-Abelian charge lies in the kernel of i,. (7a)-(7b) is just the 
algebraic translation of this requirement. 

The situation studied by McInnes (1984) corresponds to H = U( 1) generated by a 
minimal generator to. H is obviously identified with the gauge group of electromagnet- 
ism. In this case n must be parallel to &, n = n . &, for some integer n, since 7~ must 
belong to the Lie algebra of H and Il is quantised. (7a) requires, as stated by McInnes, 
that the charge operator lie entirely in the semisimple part of the Lie algebra of G, so 
no monopole solution exists if this is violated. (76) however is an additional condition. 
( (  8) is automatic for K = U( I) .)  

In the Weinberg-Salam model G =  U(2) = [ U ( l )  xSU(2)]/Z2; %=u( l )+su(2) .  
K=SU(2) is simply connected and so r=r*. (7b) is thus automatic. To get 
monopoles, rI must be chosen in the su(2) part. (Such a choice is however unphysical, 
since the direction of the residual U( 1) has, according to experience, Weinberg angle 
sin' O w =  0.23). 

Consider instead an electroweak theory based on G = U( 1) x SO(3) whose Lie 
algebra is the same as that of the Weinberg-Salam model, %=u( l )+s0 (3 )=  
U(  1) + su(2). To get a monopole, the non-Abelian charge vector 2Il must be chosen 
in r* of SO(3). Take [ c;e si;e I] 

T =  -sin 0 cos e 0 o s e s 2 7 T .  
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with Lie algebra 

r o u O 1  
a E R. 

Let 
0 0 1  0 -1 0 

-1 0 0 1 0 0  
L 2 = [  0 0 .] &=[  1 0 .I. 

We have B ( X ,  Y) = Tr(XY) and [ L , ,  L1 fiL,]  = i(L1 f iL,) .  
If a on t is a(aL3)=  -ia then the roots are fa .  Thus a is a simple root and 

Ha = aL, and consequently Tr(H,X) = a ( X ) ,  so that Tr(aL:) = a (  L , )  = -i, and thus 
a = -i/2. Hence H a  = iH3/2, whilst a(H,)  = 4, so H, = 4H, = 2iL3. Thus r* is gener- 
ated by 2L3. r is obviously generated by L,. (Thus r* = 2r and so . ir,(S0(3)) = Z ,  as 
expected.) According to theorem 2 we can get monopoles in this theory if and only if 
the non-Abelian charge vector has the form, 

(13) 

for some integer n. The condition of McInnes would give monopoles also for half-integer 
n. 

How did McInnes miss the condition ( 7 6 ) ?  He uses characteristic classes (Kobay- 
ashi and Nomizu 1969). However, he considers only primary invariants-which depend 
only on the free part of r1 (Horvathy and Rawnsley (1985a). The problem studied 
here is related to the fate of GUT monopoles under successive symmetry breakings 
(Bais 1981, Horvathy and Rawnsley 1985b). 

n = n ' = n .  L 
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